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Abstract
The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic
Rashba ring is investigated with unpolarized current injected through ideal
leads. Due to the Rashba spin–orbit (SO) coupling and back-scattering at the
interfaces between the leads and the ring, a beating pattern is formed in the
fast oscillation of spin accumulation. If every beating period is complete, a
plateau is formed, where the variation of spin accumulation with the external
voltage is slow, but if new incomplete periods emerge in the envelope function,
a transitional region appears. This plateau structure and the beating pattern are
related to the tunnelling through spin-dependent resonant states. Because of the
Aharonov–Casher (AC) effect, the average spin accumulation oscillates quasi-
periodically with the Rashba SO coupling and has a series of zeros. In some
situations, the direction of the average spin accumulation can be reversed by the
external voltage in this 1D Rashba ring.

1. Introduction

Because of the development of semiconductor spintronics [1–3], the spin Hall effect [4–7]
induced by the spin–orbit (SO) coupling in semiconductors has attracted a lot of interest. A two-
dimensional electronic gas (2DEG) with Rashba SO coupling, [8] arising from the inversion
asymmetry of the confining electric potential, is

H = �p2

2m∗ + α

h̄
( �̂τ × �p) · �z + Vconf(x, y), (1)

with �̂τ the Pauli operator, α the Rashba SO coupling and Vconf the confining potential. As in the
classical Hall effect, where electrons flowing along a conductor are subjected to a transverse
Lorentz force caused by a perpendicular magnetic field and are separated in the transverse
direction according to their charges, a longitudinal spin current along a 2DEG with SO coupling
is subjected to a spin transverse ‘force’ [9, 10], which can be extracted within the Heisenberg
picture as �f = 2α2m∗

h̄3 ( �p×�z)τ̂ z − �∇Vconf(x, y). This spin transverse ‘force’ depends on spin and
has no classic counterpart, and its physical meaning is contained in the quantum-mechanical
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Figure 1. (a) Schematic illustration of the structure. (b) G–QR curves at EF = −0.05 (solid) and
−1.8 (dashed) with t = tL = 1, V = 0 and N = 100.

expectation value. The direction of this ‘force’ depends on the electronic spin polarized on
the z-axis, and oscillates on the scale of the spin precession length LSO = π h̄2

2m∗α because |↑〉
and |↓〉 are not the eigenstates of the system. With unpolarized charge current flowing through
a finite-size 2DEG with Rashba SO coupling, spin-↑ and spin-↓ electrons can be separated
and accumulated on the opposite lateral edges, which has been confirmed in the recent optical
detection experiments [11, 12] and analysed in theory intensively [13–18]. If ideal transverse
leads (without SO coupling) are attached to the structures, a pure spin transverse current may
appear [19–21].

If Vconf confines the 2DEG to a mesoscopic ring [22], according to the formula of the
spin transverse ‘force’, in a 1D isolated ring, �f is perpendicular to the perimeter everywhere,
and electrons with different spin directions cannot be separated. But as an electron is incident
through an ideal lead into the ring, the scattering at the interface splits the wavefunction into
two parts. Although the ‘forces’ on the two split waves are both perpendicular to the perimeter,
the ‘composite force’ is transverse to the longitudinal unpolarized charge current and the spin
accumulation in this open system becomes possible only if the coherence between the two
split parts is kept. In the 1D mesoscopic Rashba ring, the spin-sensitive quantum interference
caused by the difference in the Aharonov–Casher (AC) phase [23, 24] plays an important role in
electronic transport [25–29], and so does the back-scattering at interfaces between the leads and
the ring, which modulate the electronic wavefunctions. Obviously, these factors will influence
the spin accumulation. The purpose of the present paper is to clarify the special properties of
the spin accumulation in this 1D mesoscopic Rashba ring and the influences of the AC effect
and the back-scattering at the interfaces.

For this purpose, we consider a structure schematically illustrated in figure 1(a), and
study the properties of spin accumulation in the nonequilibrium ballistic transport process by
assuming that the structural dimension is much smaller than the coherence length. Here, we
only numerically calculate the nonequilibrium charge current J and the spin accumulation Sz ,
but do not give an analytical expression of �f because it is difficult to obtain this expression for a
hybrid structure and, more importantly, because �f is not a measurable variable in experiments.
Due to the spin Hall effect and back-scattering at the interfaces between the leads and the ring,
a beating pattern is formed in the variation of Sz with the ring site n, and the fast oscillation
of Sz–n curve is modulated by a slow one. If every beating period in the envelope function
is complete, a plateau can be found, where the variations of J and the Sz–n curve with the
external voltage V are slow. In a transitional region between two successive plateaus, new
incomplete beating periods appear. This plateau structure and the beating pattern are both
related to the tunnelling through spin-dependent resonant peaks and if every resonant peak
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appearing in the nonequilibrium transmission window is complete, a plateau is formed. Due to
the AC effect, J and the average spin accumulation 〈Sz〉 oscillate quasi-periodically with the
Rashba SO coupling and exhibit a series of zeros at the same positions. In some situations, the
direction of 〈Sz〉 can be reversed by V in this ring structure.

The organization of this paper is as follows. In section 2, the theoretical model and
calculation method are presented. In section 3, the numerical results are illustrated and
discussed. A brief summary is given in section 4.

2. Model and formulae

In the present paper, we consider the ballistic transport through a 1D mesoscopic Rashba ring
and investigate the nonequilibrium spin accumulation on the ring when unpolarized charge
current is injected through ideal leads. Our attention is focused on the influences of back-
scattering at the interfaces between the leads and the ring and the AC effect resulting from
electronic spin precession along the arms of ring caused by the Rashba SO coupling. The
structure considered is schematically illustrated in figure 1(a), where a mesoscopic ring of
length N with the SO hopping parameter tSO is connected to two ideal leads where no SO
interaction exists. In the present paper, we only consider a structure where the two leads are
connected symmetrically to the ring with the same tunnelling matrix element tL. With external
voltage applied, the chemical potentials of the two leads become µl = Vl with l = L, R and
the system is generally in the nonequilibrium state unless VL = VR. Without loss of generality,
it is assumed that VL = −VR = V/2 with the chemical potential of the ring set as zero. With
the z direction perpendicular to the ring plane, the Hamiltonian of the system including the ring
and leads can be written in the tight-binding representation as [22, 28, 29]

H = Hring + HL + HR + HT, (2)

where Hring, Hl and HT are the Hamiltonians of the ring, the leads and the tunnelling between
them. They are

Hring =
N∑

n=1σ

{
−td†

nσ dn+1σ + itSO

∑

σ ′
(cos ϕn τ̂

x
σσ ′ + sin ϕn τ̂

y
σσ ′)d†

nσ dn+1σ ′ + H.c.

}
, (3)

HL =
−1∑

n=−∞

∑

σ

{
V

2
c†

nσ cnσ − t
(
c†

nσ cn−1σ + H.c.
)}

, (4)

HR =
∞∑

n=1

∑

σ

{
− V

2
c†

nσ cnσ − t
(
c†

nσ cn+1σ + H.c.
)}

(5)

and

HT = −tL
∑

σ

(
c†
−1σ dN/2+1σ + c†

1σ d1σ + H.c.
)

, (6)

where dnσ and cnσ are the electronic annihilation operators on the ring and leads, with σ = ↑,↓.
Here, dN+1σ = d1σ , ϕn = 2π(n − 1

2 )/N . With the z axis set as the quantization direction, τ̂ x =( 0 1
1 0

)
, τ̂ y =

( 0 −i
i 0

)
and τ̂ z =

( 1 0
0 −1

)
. This tight-binding Hamiltonian is obtained

from the effective mass Hamiltonian (1) by employing the local orbital basis and has been
successfully applied to quasi-1D and 2D structures with the spin Hall effect [17, 20, 28, 29].
It is related to the effective mass Hamiltonian (1) via the relations t = h̄2/(2m∗a2) and
tSO = α/(2a) with a the lattice spacing.

Without external voltage V = 0, the system is in the equilibrium state and µl = 0.
When an electron on the Fermi surface EF with spin σ is incident from the left lead to the
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ring, the corresponding wavefunction in this lead is �(inc)
σ = ∑−1

n=−∞ eikLnc†
nσ |0〉, with |0〉 the

vacuum state. Similarly, the transmitted wavefunctions through the right lead can be written as
�(tr)

σ = ∑
σ ′ tσ ′,σ

∑∞
n=1 eikRnc†

nσ ′ |0〉. Here, −2t cos kl = EF in the two leads with kL = kR. The
corresponding reflected wavefunction in the left lead is �(r)

σ = ∑
σ ′ rσ ′,σ

∑−1
n=−∞ e−ikLnc†

nσ ′ |0〉.
If the electronic wavefunction in the ring is expressed as �σ = ∑N

n=1σ ′ anσ ′,σ d†
nσ ′ |0〉,

the transmission coefficient |tσ ′,σ |2 through spin channel σ ′ and the electronic occupation
probability |anσ ′,σ |2 of spin σ ′ on the ring site n can be obtained by directly solving the
Schrödinger equation. The conductance is

G =
∑

σ ′,σ
|tσ ′,σ |2. (7)

In the present paper, we only consider the situation at zero temperature. By this method,
the influences of the interface scattering and the AC effect are taken into account. Without
external magnetic flux, the Kramers degeneracy guarantees that |tσ ′,σ |2 is independent of the
spin direction of the incident electron, and we can simply write the transmission coefficient as
|tσ ′ |2. But if the time-reversal symmetry is lifted, we have to calculate tσ ′,σ for σ = ↑ and ↓
respectively.

With an external voltage applied V 
= 0, the system is in the nonequilibrium state, and
it is usually dealt with via the Keldysh Green function approach, but in the present paper, we
treat the nonequilibrium transport through this noninteracting electronic system via a method
similar to that adopted to calculate the conductance in the preceding paragraph. Three basic
assumptions are taken:

(i) at time −∞, the ring and leads are not connected, and the two leads are in their own
thermal equilibrium with the chemical potential ±V/2;

(ii) the adiabatic switching on of the hopping parameters connecting the ring and leads yields
a steady electronic flow at time 0 leaving the electronic distribution functions in the leads
unchanged; and

(iii) in the tunnelling process, the electronic coherence is kept and its energy is conserved.

Under these assumptions, the wavefunction of an electron with energy E in lead l has the
same form as that in the equilibrium state except that the wavevector kl is related to E as
Vl − 2t cos kl = E . By solving the corresponding Schrödinger equation, we can obtain |tσ ′,σ |2
and |anσ ′,σ |2 at energy E . Then the current formula is

J =
∫ ∑

σ ′,σ
|tσ ′,σ |2 sin kR

sin kL
dE (8)

with Tσ ′,σ (E) = |tσ ′,σ |2 sin kR
sin kL

the transmission coefficient at energy E . In this Landauer–
Büttiker formula, the integration is taken in the range from max{EF − V/2,−2t + V/2} to
min{EF + V/2, 2t − V/2} because of the Pauli exclusion principle. This formula is in the
same form as that derived from the Keldysh Green function approach at zero temperature.
In the equilibrium state with V = 0, no extra spin is accumulated on the ring, and the spin
accumulation comes entirely from the nonequilibrium unpolarized electronic current. Based
on this consideration, the spin accumulation on the ring can be calculated as

Sν(n) =
∑

σ ′′σ ′σ

∫ (
a†

nσ ′′,σ τ̂ ν
σ ′′σ ′anσ ′,σ

)
dE (9)

with the integration carried out in the same range as in J .
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Figure 2. ((a) and (g)): Grey-scaled diagrams of the variations of Sz with V and n. (b)–(e) and
(h)–(k): Sz–n curves at V = 0.25 (b), 0.35 (c), 0.4 (d), 0.5 (e), 0.4 (h), 0.5 (i), 0.51 (j) and 0.6 (k).
(f) and (l): 〈Sz〉–V (solid) and J –V (dashed) curves. In (a)–(f), QR = 0.6, and in (g)–(l), QR = 2.
In this figure, EF = −0.05, and the other parameters are the same as in figure 1.

3. Results and discussion

In the calculations in this paper, we always set t = 1 and N = 100. As a comparison with the
results of other authors [25–29], the variations of G in the equilibrium state are presented in
figure 1(b), where the G–QR curves are illustrated at different EF. Here, QR = NtSO

π t , which has
several physical meanings. It is the spin precession angle over the circumference of a 1D ring
and is also the ratio between the perimeter and the spin precession length. According to an exact
analytic expression derived from the effective mass Hamiltonian [25–28], G can be written

as G = g0(kF,�AC)(1 − cos �AC) with kF the Fermi wavevector and �AC = π

√
Q2

R + 1
the half of the difference between the phases accumulated by spin-↑ and spin-↓ electrons.
Consequently, at QR = √

Z 2 − 1 with Z an even integer, G = 0, which is caused entirely by
the spin-sensitive quantum interference and independent of the specific value of EF. However,
the factor g0, influenced by the back-scattering at the interfaces between leads and the ring, is
dependent on EF. All of these characteristics are verified by our numeric results. The small
deviation of the zero positions from

√
Z 2 − 1 is due to the difference between the discrete and

continuum models. Now we turn our attention to the nonequilibrium state and investigate the
characteristics of the spin accumulation on this 1D Rashba ring.

The variations of Sz with V are presented in figures 2 and 3 at EF = −0.05 and −1.8,
respectively. In these two figures, the left half of the diagrams corresponds to the situation with
QR = 0.6, and the right to QR = 2. We focus our attention on figure 2 and consider the former
situation first. Figure 2(a) is a grey-scaled diagram of Sz–V –n, with Sz ranging from −0.06
(black) to 0.06 (white). A series of plateaus can be found, where the variation of Sz with V is
slow at any specific site n, and between two successive plateaus a transitional region appears,
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Figure 3. ((a) and (e)): Grey-scaled diagrams of the variations of Sz with V and n. ((b), (c), (f) and
(g)): Sz–n curves at V = 0.45 ((b) and (f)), and 0.6 ((c) and (g)). ((d) and (h)): 〈Sz〉–V (solid) and
J –V (dashed) curves. In (a)–(d), QR = 0.6, and in (e)–(h), QR = 2. In this figure, EF = −1.8,
and the other parameters are the same as in figure 1.

where Sz varies rapidly. The Sz–n curves are plotted in figures 2(b)–(e) at four specific values
of V with (b) and (e) corresponding to V in two successive plateaus and (c) and (d) to the
transitional region between them. These curves contain two types of oscillation: one is fast and
the other slow. The beating pattern in the variation of Sz with n is remarkable at EF = −0.05,
close to the band centre. In the plateaus, every beating periods in the envelope function of Sz–n
curve is complete, whereas in the transitional regions, new incomplete periods appear. In the
situation with QR = 2, the variation of Sz with V has similar characteristics to those with
QR = 0.6, and the beating pattern can even be seen directly from diagram (g), which is plotted
in the same scale as figure 2(a).

In the experiments of present stage, only the average spin accumulation is measured, and
we define

〈Sz〉 = 2

N

N/2∑

n=2

(
Sz(n) − Sz(n + N/2)

)
(10)

as the average spin accumulation on the ring. In figures 2(f) and (l), the 〈Sz〉–V curves are
plotted with QR = 0.6 and 2, respectively. Both of them contain a series of smooth plateaus,
which have one-to-one correspondence with those in the Sz–V –n diagram. In the transitional
regions, 〈Sz〉 changes rapidly and can even undergo a variation from negative to positive values,
i.e., the accumulated electrons on the upper arm are changed from spin-↓ to spin-↑. These
results are concerned with the out-of-plane spin accumulation. As in references [10] and [17],
Sx also exhibits opposite signs on the two arms because of the precession of the spin-↑ and
spin-↓ electrons in this Rashba ring. A similar plateau structure and beating pattern can be
found in Sx , and its results are not presented here.

Obviously, the beating pattern in spin accumulation should affect the nonequilibrium
electronic current. As can be seen from figures 2(f) and (l), the increase of J in the range
V < EF + 2 is not linear but has a series of plateaus—with complete beating periods formed
on the ring, the increase of J with V is slow, whereas in the transitional regions J increases
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Figure 4. Variation of T↑,↑ (dashed), T↓,↑ (dotted) and
∑

σ ′,σ Tσ ′,σ (solid) with E for QR = 2 at
EF = −0.05 (a) and −1.8 (b). From bottom to top, each set of curves is offset by two units. The
other parameters are the same as in figure 1.

rapidly. This characteristic is more remarkable for QR = 2, and for QR = 0.6 it can still be
found by checking the derivative variation of the corresponding J–V curve. If V > EF +2, the
width of the transmission window in equation (8) is no longer increased, and the saturation of J
is reached. Of course, this point cannot be reached in the considered range of V at EF = −0.05.

In the three preceding paragraphs, we discussed the nonequilibrium results obtained at
EF = −0.05. As a comparison, figure 3 illustrates those at EF = −1.8, which show the same
characteristics. But with the Fermi energy close to the band edges, the distinction between
the fast and slow oscillations in Sz–n curves is not clear, and the plateaus correspond to the
situation where every oscillation period in the Sz–n curve is complete, and with a new period
appearing, the system is in a transitional region. At V = 0.2, the transmission window reaches
its maximum width. As V is further increased, the width remains unchanged, but this does
not mean that J should also remain unchanged. Instead, J oscillates with small amplitude,
accompanying the alternative variation of Sz between plateaus and transitional regions. With
V increased, no direction reversal of 〈Sz〉 can be found in this situation.

To clarify the mechanism leading to the beating pattern and plateau structure, in figure 4,
the Tσ,↑ − E and

∑
σ ′,σ Tσ ′,σ − E curves at different V are illustrated in the transmission

window, where a series of spin-dependent resonant peaks can be found. When every peak in
the window is complete, all of the beating periods in an Sz–n curve are complete also, and the
system is in a plateau. If the peak–valley contrast is large, the difference between plateaus and
transitional regions is distinct. For EF = −0.05 (see figure 4(a)) with V increased, the window
becomes wider and more peaks enter, whereas for EF = −1.8, close to the band edges (see
figure 4(b)) with V > 0.2, the width of the transmission window is no longer increased, but
its position still moves with V . In this process, new peaks may enter the window, and old ones
may leave, which leads to the plateau structure in the variation of Sz with V and the small
oscillation of J–V curves.

For an isolated ring without Rashba SO coupling, there are N discrete states with ki =
2π i/N . With ideal leads connected via tunnelling matrix elements, these states are perturbed,
but N discrete resonant states can still be found in the structure, and tunnelling through these
states results in a plateau structure in the nonequilibrium current. These perturbed states are
no longer pure plane waves but are modulated because of the scattering at the interfaces, and
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Figure 5. Variations of J ((a) and (b)) and 〈Sz〉 ((c) and (d)) with QR for V = 0.05 (solid), 0.5
(dashed) and 1 (dotted) with EF = −0.05 ((a) and (c)) and −1.8 ((b) and (d)). The other parameters
are the same as in figure 1.

closer to the band centre, the wavefunction beats more clearly. In a spin-symmetric ring, the
resonant states are spin-independent and no spin can be accumulated. In a ring with tSO 
= 0,
at a specific energy, there are four spin-dependent wavefunctions corresponding to ±(k ± kSO)

with kSO = π
2LSO

. The scattering at the interfaces modifies the unperturbed states and leads
to beating in these spin-dependent resonant states. As in the spin-symmetric case, with E
closer to the band centre, the beating pattern is clearer. As an evidence of spin Hall effect,
spin accumulation can be found, which is an additive result. Careful checking of numeric data
shows that the main contribution to Sz comes from the outmost unpaired resonant state in the
transmission window and symmetric pairs with E = 0 cancel each other exactly. All of these
lead to the beating pattern in the variation of Sz , which is a special property of a 1D mesoscopic
Rashba ring. The results in the present paper are obtained at zero temperature, but only if the
temperature cannot blur those resonant peaks can the beating pattern and plateau structure be
found in a 1D Rashba ring.

In the preceding studies on the nonequilibrium state, two different QR values are taken: one
is 0.6 and the other 2. How about the results with other Rashba SO coupling? In figures 5(a)
and (b), the variations of J with QR are plotted for different V at EF = −0.05 and −1.8,
respectively. For any V and EF, these curves oscillate quasi-periodically and have zeros at
QR ∼ √

Z 2 − 1 with Z an even integer because of the AC effect and irrelevance of the positions
of transmission zeros with the electronic energy in a pure 1D ring. For EF = −1.8, the J–QR

curve at V = 0.5 is close to that at V = 1, because in this situation the current has already
been saturated. The variation of Sz with QR at different V is also calculated. In a grey-
scaled diagram of Sz–QR–n, a specific beating pattern, independent of QR, can be found in the
variation of Sz with n. At each site, Sz oscillates quasi-periodically with QR synchronously. We
do not present this diagram, but give the 〈Sz〉–QR curves in figures 5(c) and (d). They oscillate
quasi-periodically and have zeros at QR ∼ √

Z 2 − 1, which is also the consequence of spin-
sensitive quantum interference. For EF = −0.05, with V = 0.05 and 0.5, the oscillations of
the 〈Sz〉–QR curves have a phase shift of π , resulting from the direction reversal of 〈Sz〉 with
V . Although the main results of this paper are obtained at QR = 0.6 and 2, they can be looked
at as two representatives in one quasi-period, and their basic characteristics can be found for
any QR.
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4. Summary

In summary, we investigate the nonequilibrium spin accumulation on a 1D mesoscopic Rashba
ring with unpolarized current injected through ideal leads. Because of the spin Hall effect and
back-scattering at the interfaces between the leads and the ring, a beating pattern can be found in
the Sz–n curves. When every beating period in the envelope function is complete, a plateau is
formed, where the variations of Sz , 〈Sz〉 and J with V are slow. If new incomplete beating
periods enter the envelope function, a transitional region appears between two successive
plateaus. This plateau structure and the beating pattern are related to the tunnelling through
the spin-dependent resonant states in the nonequilibrium transmission window. Due to the AC
effect, 〈Sz〉 and J oscillate quasi-periodically with QR, and exhibit a series of zeros at the same
positions. In some situations, the direction of 〈Sz〉 can be reversed by V in this ring structure.
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